Nanjing Jiangning Shuntai Precision Machinery Factory
Search
Home

Search

  • How to read the number of ball screw
    Feb 17, 2025
    A ball screw is a mechanical element commonly used to transmit motion and force. It consists of a threaded shaft and a nut, and the balls are used to transmit force and motion through the threads between the threaded shaft and the nut. The balls play the role of transmitting force, reducing friction and side motion, and improving transmission efficiency and precision. The identification criteria of ball screws can be described by the following aspects. The first is the pitch, which indicates the distance the ball screw moves forward per rotation. The pitch determines the speed and sensitivity of the ball screw, usually expressed in millimeters/turn or inches/turn. The second is the load capacity. The load capacity of a ball screw describes the maximum load it can withstand, usually in Newtons (N) or pounds-force (lbf). The load capacity directly affects the scope of use and application of the ball screw. Different working environments and requirements require the selection of appropriate load capacity. The third is the accuracy level. The accuracy level refers to the accuracy of the movement and transmission of the ball screw. Commonly used accuracy levels include C0, C3, C5, etc. The accuracy grade determines the positioning accuracy and repeatability of the ball screw, which is very important for applications that require high-precision position control. In addition, the diameter, length, material, etc. of the ball screw are also important contents in the identification description. The diameter and length affect the overall size and installation method of the ball screw, while the material determines the strength and durability of the ball screw. Nanjing Shuntai Precision Ball Screw Pair is standardized into 8 types of nuts as shown in the figure. In addition, in order to meet customer requirements, we can make non-standardized nuts with special shapes (such as square, axis intersection, etc.), special properties (such as high temperature resistance, corrosion resistance, etc.) and unconventional formats (such as extension, heavy load). If you have any needs, please consult.
    Read More
  • How to prevent and maintain ball screws
    Dec 05, 2025
    As a key transmission component for converting rotary to linear motion, ball screws have become the "heart" of high-end equipment such as precision instruments, CNC machine tools, and automated equipment, directly determining the operating accuracy and stability of the equipment, thanks to their three core advantages: "high precision, high efficiency, and high rigidity". Eight Key Points for Daily Maintenance Cleaning and Protection: Regularly clean the lead screw surface with a brush or compressed air to remove dust and chips, preventing impurities from entering the raceway; in harsh environments, install dust covers and protective sleeves. Scientific Lubrication: Select lubricant according to operating conditions, and replenish/change oil regularly according to operating time to ensure uniform lubrication of the raceway. Load Control: Strictly adhere to rated load requirements, avoiding instantaneous overload or impact loads to prevent lead screw deformation. Precise Installation: Ensure the lead screw is parallel and coaxial with the guide rail during installation, and tighten the bearings. Environmental Adaptability: Keep away from high temperature, high humidity, and corrosive environments. Take heat insulation, moisture-proof, and anti-corrosion measures when necessary. Regular Inspection: Establish an operation log, record changes in noise, temperature, and accuracy, and stop the machine for repair immediately if any abnormalities are found. Maintenance During Idle Time: When not in use for a long time, apply anti-rust oil and cover with a protective cover to prevent rust and dust accumulation. Synchronous Maintenance: Simultaneously check mating components (bearings, guide rails, drive motor) to ensure the stable and coordinated operation of the entire transmission system. Prevention and Inspection Techniques Visual Inspection: Inspect the lead screw surface for scratches, rust, and dents; check for intact and undamaged threads. Lubrication Check: Observe the even distribution of lubricant. If the color turns black or the viscosity decreases, replace it immediately. Smoothness Test: Manually rotate the lead screw or run it under no-load to check for any jamming or uneven resistance. Noise Identification: Listen for abnormal friction or impact sounds during operation, paying particular attention to the bearing area. Accuracy Inspection: Use a dial indicator and laser interferometer to check the positioning accuracy and repeatability, comparing them with standard values ​​to determine if the accuracy is satisfactory. Exceeding limits; Clearance Measurement: Use a feeler gauge or dial indicator to check the clearance between the lead screw and nut. If it exceeds the limit, the component needs to be replaced; Connection Tightness: Check the bolts of the bearing housing, coupling, and nut housing to prevent loosening that could cause vibration; Temperature Monitoring: Use a thermometer to check the temperature of the bearing and lead screw body after operation. If it exceeds 60℃, lubrication or installation problems need to be investigated; Cleanliness Assessment: Check for chips and oil accumulation around the lead screw and clean them promptly; Thread Flaw Detection: For lead screws in critical operating conditions, use magnetic particle testing or penetrant testing to check for hidden thread damage.
    Read More

leave a message

leave a message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
submit

Home

Products

whatsApp

contact