Nanjing Jiangning Shuntai Precision Machinery Factory
Search
Home

Search

  • Why are ball screws so expensive?
    Jan 26, 2024
    Ball screws can be relatively expensive due to several reasons: 1. Precision Manufacturing: Ball screws require high precision manufacturing processes to achieve tight tolerances and smooth operation. The manufacturing process involves grinding the screw thread and the matching ball nut to ensure optimal fit and minimal backlash. This precision manufacturing adds to the overall cost. 2. Quality Materials: Ball screws are typically made from high-quality materials such as hardened steel for the screw and a nut made from materials like bronze or steel. The selection of these materials ensures durability, corrosion resistance, and long operational life, but they can be costly. 3. Complex Design: The design of ball screws involves a complex configuration with multiple components such as balls, circulation systems, and seals. The precise engineering and fitting of these components to minimize friction, increase efficiency, and reduce wear contribute to the higher cost. 4. Performance and Efficiency: Ball screws offer advantages over other types of screws in terms of performance, such as high load capacity, accuracy, and minimal backlash. Achieving these performance characteristics requires high-quality materials and precision manufacturing, which can drive up the cost. 5. Specialized Applications: Ball screws are commonly used in applications that require precise linear motion, such as CNC machines, servo systems, robotics, and aerospace equipment. The specialized nature of these applications often demands stringent requirements, leading to higher costs. While ball screws may seem expensive compared to other screw types, their performance, accuracy, and durability make them valuable in many industrial and high-precision applications.
    Read More
  • Communicate and learn with customers
    Mar 06, 2024
    Communicating and learning with foreign customers is an exciting and challenging process that can help you expand your cross-cultural communication skills, understand international business etiquette, and improve your communication skills. Here are some suggestions to help you better communicate and learn from foreign customers: 1. Learn the other party’s culture: Understand the other party’s country’s history, values, social customs and business environment. This can help you better understand their background and behavior, avoid culture clashes, and build a better trusting relationship. 2. Prepare in advance: Make sure to make adequate preparations before communicating with foreign customers. Understand their business, products and services, as well as the challenges and needs they may face. This will allow you to communicate more purposefully and demonstrate your concern and expertise for them. 3. Learn their language: Try to learn something of the other person’s language, even if it’s just some basic greetings and common expressions. Not only does this help you understand the other person better, it also shows that you respect and are willing to put in the effort to communicate effectively with them. 4. Pay attention to language and cultural differences: When communicating with foreign customers, pay attention to language and cultural differences. Language can be misunderstood, so you should try to use concise and clear expressions and avoid using slang or jargon that is difficult to understand. Additionally, pay attention to nonverbal communication styles in different cultures, such as eye contact, body language, and the meaning of gestures. 5. Active listening and asking questions: Actively listen to the other person’s views and needs, and ask targeted questions. This demonstrates your interest and concern and ensures you understand the other person correctly. Avoid expressing opinions too directly or dogmatically, and respect and accept different views and opinions. 6. Adapt to time zone differences: If you and your foreign clients are in different time zones, be sure to arrange meeting times reasonably. Try to find a time that is convenient for both parties, and be sure to inform the other party of the meeting arrangements in advance. 7. Use appropriate technology tools: Use appropriate technology tools to communicate remotely, such as conference calls, video conferencing, or online collaboration platforms. Make sure you are familiar with the tool you are using and test its stability and reliability during communications. 8. Respect business etiquette: Understand the business etiquette of the other country and try to abide by it. This shows your respect and value for your partner, while also helping to build a good business relationship. 9. Pay attention to cross-cultural communication skills: Actively seek and learn cross-cultural communication skills and strategies. Learn how to deal with conflicts and misunderstandings in different cultural contexts, and how to build cooperative and win-win relationships. 10. Continuous learning and improvement: Communication and learning with foreign customers is a process of continuous development and improvement. Continuously learn and improve your communication skills and cross-cultural cooperation capabilities by reflecting on and summarizing experiences.
    hot Tags : ball screw lead screw
    Read More
  • How much weight can a ball screw hold?
    Aug 02, 2024
    The load capacity of a ball screw depends on several factors, including the size, shape, material, and design and manufacturing quality of the ball screw. Generally, the load capacity of a ball screw is given in the technical specifications and parameter tables provided by the manufacturer. These specification tables usually list the rated load capacity, maximum load capacity, rated speed, and rated service life of the ball screw. The rated load capacity refers to the recommended load of the ball screw under the design calibration conditions, while the maximum load capacity refers to the maximum load that the ball screw can withstand, but may reduce the life of the ball screw or cause other side effects. The load capacity of a ball screw is also affected by the operating environment and usage conditions. For example, the load capacity of a ball screw may be reduced in a high temperature environment. Therefore, when selecting and using a ball screw, factors such as load type, direction, speed, acceleration, and operating temperature need to be considered. In summary, to determine the load capacity of a ball screw, it is best to refer to the specification table provided by the manufacturer and ensure that it is selected and used according to the actual application conditions.
    Read More
  • How is the trapezoidal lead screw implemented in the printer?
    Jan 11, 2025
    Trapezoidal screws are widely used in printing. It is a screw with a threaded structure, usually used in conjunction with a nut. The thread of the trapezoidal screw usually adopts a trapezoidal cross-section, hence the name trapezoidal screw. In printing, the trapezoidal screw is used as a transmission element for axial motion to control the up and down movement of the print head and the lifting and lowering of the printing platform. Usually, the trapezoidal screw is matched with the nut, and the precise position control of the print head or printing platform is achieved through the movement of the nut on the screw. The trapezoidal screw can provide high-precision and stable motion transmission, allowing the printing device to accurately position the print head, thereby achieving high-quality printing effects. The characteristic of the trapezoidal screw is that it has self-locking properties, that is, when the force or torque stops being applied, the screw will not rotate automatically and can maintain the stability of its position. This feature is very important for printing applications because it ensures that the print head remains stable when it stops, avoiding position errors or printing quality problems. In addition to printing applications, trapezoidal screws are also widely used in other fields such as mechanical engineering, automation equipment, aerospace, etc., for precise position control and motion transmission. --
    Read More
  • How do the ball screws used in injection molding machines work?
    Oct 31, 2025
    The ball screw (often called a "lead screw") of an injection molding machine is its core component, often referred to as the "heart" of the machine. Its operation is a complex process integrating physics, mechanics, and thermodynamics. Simply put, its core task is to transport, melt, compress, and homogenize solid plastic granules, ultimately injecting the molten plastic into the mold cavity with sufficient pressure and speed. To better understand its operation, we can divide its working cycle into the following stages: A complete working cycle of an injection molding machine ball screw. In a complete injection cycle, the ball screw mainly performs two actions: rotation and axial movement. Its working cycle can be divided into three stages: 1. Rotation (Plasticizing/Metering) Stage Objective: To transport, heat, melt, and homogenize the solid plastic granules in the hopper. Action: The lead screw rotates at high speed inside the barrel but does not move forward (at this time, the injection cylinder at the rear of the lead screw releases pressure, allowing the lead screw to retract due to the reaction force of the plastic during rotation). Operation Process: Feeding and Conveying: Plastic granules fall from the hopper into the barrel. The rotation of the screw, like a screw turning in a nut, uses the inclined plane of the thread to continuously push the plastic granules forward. Compression and Melting: The screw structure is divided into three sections from back to front: the feeding section, the compression section, and the metering section. Feeding Section: The thread depth is relatively deep, mainly used for stable conveying of solid granules. Compression Section: The thread depth gradually decreases. Here, the plastic is strongly compressed and sheared, while the heating coil outside the barrel also heats it. Under the combined action of "shear heat" and "external heating," the solid plastic rapidly melts into a viscous flow state. In fact, more than 80% of the melting heat comes from the shear heat generated by the screw rotation. Metering Section: The thread depth is the shallowest. Its main function is to further homogenize the temperature and composition of the melt, ensuring the uniform quality of the melt stored at the front end. Result: Uniformly molten plastic is pushed to the front of the screw (at the nozzle), and the accumulated pressure (back pressure) pushes the entire screw backward, reserving a fixed amount of molten material for the next injection. 2. Axial Movement (Injection/Holding Pressure) Stage Objective: To inject the molten plastic reserved in the previous stage into the mold cavity at high speed and high pressure. Action: The screw stops rotating and, under the powerful thrust of the injection cylinder, moves forward at high speed as a piston. Operation Process: Injection: The screw advances forward at extremely high speed, injecting the molten plastic reserved in the front through the nozzle, mold runner, and gate into the closed mold cavity. This process needs to be completed in a very short time to ensure that the molten material fills every corner of the cavity simultaneously. Holding Pressure: When the cavity is about to be filled, the injection speed slows down, transitioning to a high-pressure "holding pressure" stage. The screw continues to move forward slowly, using extremely high pressure to replenish the volume vacated by the cooling and shrinkage of the plastic, preventing defects such as shrinkage marks and insufficient material in the product. 3. Reset (Preparing for the Next Cycle) Objective: To prepare the melt for the next injection molding cycle. Action: After the holding pressure is completed, the screw stops axial movement and begins to rotate again (returning to the first stage) for the next plasticizing and metering. At this time, the mold opens, ejects the product, and then closes, awaiting the next injection. Key Design Features of the Ball Screw To accomplish the above complex tasks, the ball screw itself is designed with great precision: Length-to-Diameter Ratio (L/D): The ratio of the ball screw's length to its diameter. A larger L/D ratio results in better plasticizing and more uniform temperature. Common ratios are between 18:1 and 25:1. Compression Ratio: The ratio of the volume of the first threaded groove in the feeding section to the volume of the last threaded groove in the metering section. It determines the degree of plastic compression and is crucial to melting efficiency. Different plastics require different compression ratios. Three-Stage Design: As mentioned above, the feeding section, compression section, and metering section each perform their respective functions, forming the basis for the efficient operation of the lead screw. In summary, you can visualize the operation of an injection molding machine screw as follows: It's like a "meat grinder": as it rotates, it bites, shears, mixes, and conveys materials. It's like a "piston" or "syringe": as it propels forward, it injects the processed "fluid" under high pressure. It's also a "heat generator": through its own rotational shearing, it generates most of the heat needed to melt the plastic. This ingenious combination of "rotational plasticizing" and "axial injection" allows the injection molding machine screw to efficiently and precisely complete the transformation process from solid granules to precision plastic products.
    Read More
  • How to prevent and maintain ball screws
    Dec 05, 2025
    As a key transmission component for converting rotary to linear motion, ball screws have become the "heart" of high-end equipment such as precision instruments, CNC machine tools, and automated equipment, directly determining the operating accuracy and stability of the equipment, thanks to their three core advantages: "high precision, high efficiency, and high rigidity". Eight Key Points for Daily Maintenance Cleaning and Protection: Regularly clean the lead screw surface with a brush or compressed air to remove dust and chips, preventing impurities from entering the raceway; in harsh environments, install dust covers and protective sleeves. Scientific Lubrication: Select lubricant according to operating conditions, and replenish/change oil regularly according to operating time to ensure uniform lubrication of the raceway. Load Control: Strictly adhere to rated load requirements, avoiding instantaneous overload or impact loads to prevent lead screw deformation. Precise Installation: Ensure the lead screw is parallel and coaxial with the guide rail during installation, and tighten the bearings. Environmental Adaptability: Keep away from high temperature, high humidity, and corrosive environments. Take heat insulation, moisture-proof, and anti-corrosion measures when necessary. Regular Inspection: Establish an operation log, record changes in noise, temperature, and accuracy, and stop the machine for repair immediately if any abnormalities are found. Maintenance During Idle Time: When not in use for a long time, apply anti-rust oil and cover with a protective cover to prevent rust and dust accumulation. Synchronous Maintenance: Simultaneously check mating components (bearings, guide rails, drive motor) to ensure the stable and coordinated operation of the entire transmission system. Prevention and Inspection Techniques Visual Inspection: Inspect the lead screw surface for scratches, rust, and dents; check for intact and undamaged threads. Lubrication Check: Observe the even distribution of lubricant. If the color turns black or the viscosity decreases, replace it immediately. Smoothness Test: Manually rotate the lead screw or run it under no-load to check for any jamming or uneven resistance. Noise Identification: Listen for abnormal friction or impact sounds during operation, paying particular attention to the bearing area. Accuracy Inspection: Use a dial indicator and laser interferometer to check the positioning accuracy and repeatability, comparing them with standard values ​​to determine if the accuracy is satisfactory. Exceeding limits; Clearance Measurement: Use a feeler gauge or dial indicator to check the clearance between the lead screw and nut. If it exceeds the limit, the component needs to be replaced; Connection Tightness: Check the bolts of the bearing housing, coupling, and nut housing to prevent loosening that could cause vibration; Temperature Monitoring: Use a thermometer to check the temperature of the bearing and lead screw body after operation. If it exceeds 60℃, lubrication or installation problems need to be investigated; Cleanliness Assessment: Check for chips and oil accumulation around the lead screw and clean them promptly; Thread Flaw Detection: For lead screws in critical operating conditions, use magnetic particle testing or penetrant testing to check for hidden thread damage.
    Read More
  • Analysis of the Motion Principle and Selection Guide for Trapezoidal Lead Screws
    Dec 12, 2025
    In industrial automation and precision equipment, trapezoidal lead screws are the core transmission mechanism for achieving rotary-to-linear motion, directly affecting the accuracy and stability of the equipment. However, practitioners often suffer from decreased equipment efficiency and shortened lifespan due to a lack of in-depth understanding of the principles and improper selection. This article will break down the motion principle of trapezoidal lead screws and provide a practical selection guide. I. Product Motion Principle and Related Parameters 1. Motion Principle: The trapezoidal lead screw converts rotational motion into linear motion through the meshing of the screw and nut, simultaneously transmitting energy and power. II. Product Features 1. Simple structure, convenient processing and operation, and economical cost; 2. Self-locking function is achieved when the thread helix angle is less than the friction angle; 3. Smooth and stable transmission process; 4. Relatively high frictional resistance, with a transmission efficiency in the range of 0.3~0.7. In self-locking mode, the efficiency is below 0.4; 5. Possesses a certain degree of impact and vibration resistance; 6. Overall load capacity is stronger than that of ordinary rolling screws. III. Selection and Verification Calculations For general force-transmitting screws, the main failure modes are thread surface wear, fracture under tensile stress, shearing, and shearing or bending at the thread root. Therefore, the main dimensions of the screw drive are determined primarily based on wear resistance and strength calculations during design. For transmission screws, the main failure mode is excessive clearance due to wear or deformation leading to decreased motion accuracy. Therefore, the main dimensions of the screw drive should be determined based on thread wear resistance and screw stiffness calculations during design. If the transmission screw also bears a large axial load, its strength needs to be additionally calculated. Long screws (slenderness ratio exceeding 40) that are not manually adjustable may produce lateral vibration; therefore, their critical speed needs to be checked. IV. Usage Precautions 1. Load Considerations: Additional radial loads should be avoided as much as possible, as such loads can easily cause screw malfunction, increased wear, and jamming. 2. Dust Prevention Requirements: Foreign objects must be prevented from entering the thread. If impurities such as iron filings, tin dross, and aluminum shavings are easily generated under operating conditions, a protective cover should be installed to prevent foreign objects from entering the thread and causing abnormal wear or jamming. 3. Slenderness ratio requirement: When the slenderness ratio exceeds a certain range (60 or above), the screw will bend due to its own weight, resulting in radial off-center load on the nut. Depending on the actual operating speed and torque, this may lead to abnormal wear, jamming, shaft end bending, or even breakage. To solve this problem, an anti-runout device can be installed in the middle of the screw for constraint. 4. During installation, attention should be paid to the coaxiality and levelness calibration of the fixed-support installation method; for the fixed-free cantilever structure, attention should be paid to the control of shaft end tolerances and the locking and reinforcement of the head. 5. When installing a trapezoidal thread screw, runout verification must be performed. If suitable measuring equipment is lacking, the screw can be moved by hand along its entire length once or multiple times before installing the driving component. If the force required to move the outer diameter of the shaft is uneven and accompanied by wear marks, it indicates that the lead screw, nut support, and guide rail are not aligned. In this case, first loosen the relevant mounting screws, and then move the lead screw by hand once. If the required force becomes uniform at this time, the corresponding components can be recalibrated. If the force is still uneven, the mounting screws need to be loosened again to determine the location of the calibration error.
    Read More

leave a message

leave a message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
submit

Home

Products

whatsApp

contact